
Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

163

Dining Philosophers: A Classic Problem

12	� Dining Philosophers:
A Classic Problem

Dining Philosophers is one of the best known and most used of the classic problems in concurrent and
parallel programming. This chapter:

•	 defines the problem
•	 explains its continuing relevance
•	 develops two different solutions, each of which begins with a faulty design

This problem first formulated by Dijkstra is cited by Hoare in his original paper on Communicating
Sequential Processes (Hoare, 1978). Tantalisingly, Hoare presents the problem and a partial solution
leaving it up to the reader to finish the solution. The problem was formulated at a time, in the mid-1970s,
when computer manufacturers were having a great deal of difficulty in building operating systems that
were correct and could withstand continued use. Typical problems that had to be overcome were deadlock
between different tasks and other tasks being starved of resources; exactly the same problems that the
client-server design pattern solves.

The problem has the following statement. Five philosophers spend their lives thinking and eating. They
share a common dining room in their college where there is a circular table surrounded by five chairs,
each is assigned to one of the philosophers. In the centre of the table there is a large bowl of spaghetti. The
table is set with five forks each one assigned to a specific philosopher. On feeling hungry the philosopher
enters the room, sits in his own chair and picks up his fork, which is to his left hand. The spaghetti is
so tangled that he needs to use the fork to his right hand side as well. When he has finished eating he
replaces both forks and leaves the room. The college has provided a butler who ensures that the bowl
of spaghetti is always full and can carry out other duties as necessary such as washing-up and guiding
philosophers to their own seat.

It is apparent that the critical aspect of this problem is in the management of the forks. If a philosopher
is never able to pick up the fork to their right then they will never be able to eat and will thus exhibit
starvation or as we have termed it, livelock. Similarly, if all the philosophers enter the room at the same
time and each picks up their own left fork none of them will be able to pick up their neighbour’s fork to
their right and thus deadlock will ensue as none of the philosophers will ever be able to eat.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

164

Dining Philosophers: A Classic Problem

12.1	 Naïve Management

The behaviour of a philosopher is relatively simple and is captured in Listing 12-1. A Philosopher can
access their own leftFork {12}, and their neighbour’s as their rightFork {13} they can also enter
{14} into or exit {15} from the room. A set of output channels is provided for each Philosopher so they
can indicate their intentions. A philosopher is identified by a property id {16}. The behaviour of each
philosopher will be governed by a timer {18}.

A method, action, has been provided {20-23} that prints the current action of a philosopher and also
makes them wait for a specified period. A Philosopher is initially thinking for 1 second {27}, after which
they enter the room {28}. They then indicate they are picking up their left fork by means of a signal {30}
and similarly for their right fork {32}.

They are then eating for 2 seconds {34}, after which they put down their left fork {35}, then their right
fork {37} and then they leave the room {39} to resume thinking {27}. After each successful interaction
an appropriate message is printed to the console. The messages from the Philosophers will be interleaved
on the console but in this case that is precisely what is required as we want to see how the Philosophers
interact with each other.

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

165

Dining Philosophers: A Classic Problem

10	class Philosopher implements CSProcess {
11	
12	 def ChannelOutput leftFork
13	 def ChannelOutput rightFork
14	 def ChannelOutput enter
15	 def ChannelOutput exit
16	 def int id
17	
18	 def timer = new CSTimer()
19	
20	 def void action (id, type, delay) {
21	 println "${type} : ${id} "
22	 timer.sleep(delay)
23	 }
24	
25	 void run() {
26	 while (true) {
27	 action (id, " thinking", 1000)
28	 enter.write(1)
29	 println "$id: entered"
30	 leftFork.write(1)
31	 println "$id: got left fork"
32	 rightFork.write(1)
33	 println "$id: got right fork"
34	 action (id, " eating", 2000)
35	 leftFork.write(1)
36	 println "$id: put down left"
37	 rightFork.write(1)
38	 println "$id: put down right"
39	 exit.write(1)
40	 println "$id: exited"
41	 }
42	 }
43	}

Listing 12-1The Behaviour of a Philosopher

A Fork, Listing 12-2, can either be picked up from the right or the left depending upon which Philosopher
has sat down. These are indicated by a signal on the appropriate channel, left {12}, or right {13}.

10	class Fork implements CSProcess {
11	
12	 def ChannelInput left
13	 def ChannelInput right
14	
15	 void run () {
16	 def fromPhilosopher = [left, right]

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

166

Dining Philosophers: A Classic Problem

17	 def forkAlt = new ALT (fromPhilosopher)
18	 while (true) {
19	 def i = forkAlt.select()
20	 fromPhilosopher[i].read() //pick up fork i
21	 fromPhilosopher[i].read() //put down fork i
22	 }
23	 }
24	}

Listing 12-2 The Fork Behaviour

An alternative is constructed, forkAlt {16, 17}. Once a fork has been picked up by a philosopher it can
only be put down by that philosopher, thus all we have to do is process the signal indicating the picking
up of the fork {20} and then wait for the signal indicating that it has been put down {21}.

The college has employed a lazy butler who simply notes the entries and exits to the dining room and
does little else apart from washing the forks and replenishing the bowl of spaghetti. The latter actions
are of no concern. The behaviour of the LazyButler is shown in Listing 12-3.

10	class LazyButler implements CSProcess {
11	
12	 def ChannelInputList enters
13	 def ChannelInputList exits
14	
15	 void run() {
16	 def seats = enters.size()
17	 def allChans = []
18	
19	 for (i in 0 ..< seats) { allChans << exits[i] }
20	 for (i in 0 ..< seats) { allChans << enters[i] }
21	
22	 def eitherAlt = new ALT (allChans)
23	
24	 while (true) {
25	 def i = eitherAlt.select()
26	 allChans[i].read()
27	 } // end while
28	 } //end run
29	} // end class

Listing 12-3 The Lazy Butler’s Behaviour

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

167

Dining Philosophers: A Classic Problem

The channels used to signal the entry and exit from the room are passed to the LazyButler as
ChannelInputLists enters {12} and exits {13}. The number of seats in the dining room can
be determined by the size of the list enters {16}. A List of all the channels, allChans {17} is defined
to which each of the elements of the exits and enters lists are appended {19, 20}. An alternative,
eitherAlt is defined over allChans {22} and as signals are received {25} on any of the channels they
are read {26} and ignored by the lazy butler.

The college, believing this to be a sufficient solution, implements it as shown in Listing 12-4 in the script
c12.fork.RunLazyCollege.

10	def PHILOSOPHERS = 5
11
12	def lefts = Channel.one2oneArray(PHILOSOPHERS)
13	def rights = Channel.one2oneArray(PHILOSOPHERS)
14	def enters = Channel.one2oneArray(PHILOSOPHERS)
15	def exits = Channel.one2oneArray(PHILOSOPHERS)
16
17	def entersList = new ChannelInputList(enters)
18	def exitsList = new ChannelInputList(exits)
19
20	def butler = new LazyButler (enters: entersList, exits: exitsList)
21

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

168

Dining Philosophers: A Classic Problem

22	def philosophers = (0 ..< PHILOSOPHERS).collect { i ->
23	 return new Philosopher (leftFork: lefts[i].out(),
24							 rightFork: rights[i].out(),
25							 enter: enters[i].out(),
26							 exit: exits[i].out(), id:i) }
27
28	def forks = (0 ..< PHILOSOPHERS).collect { i ->
29	 return new Fork (left: lefts[i].in(),
30	 right: rights[(i+1)%PHILOSOPHERS].in()) }
31
32	def processList = philosophers + forks + butler
33
34	new PAR (processList).run()

Listing 12-4 The College’s Lazy Implementation

The number of PHILOSOPHERS is defined {10} and then each of the required channel arrays {12–15}
and corresponding channel lists {17, 18} are defined. The butler and collection of philosophers are
defined, passing channel parameters as required {20–26}. The collection of forks is then defined {28–30}
noting that the same fork can be accessed as the left fork of the i’th philosopher and the right fork of
the i+1’th philosopher {30}, using modulo arithmetic to ensure the subscripts stay in range. Execution
of this scheme produces the output shown in Output 12-1.

 thinking : 1

 thinking : 2

 thinking : 3

 thinking : 4

 thinking : 0

1: entered

2: entered

3: entered

4: entered

0: entered

2: got left fork

3: got left fork

1: got left fork

4: got left fork

0: got left fork

Output 12-1Operation Of The Lazy College

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

169

Dining Philosophers: A Classic Problem

As can be observed, all the philosophers think, then enter the dining room and then they each pick up
their left fork after which no further progress is possible. Even more worrying for the college is that
sometimes the solution appears to work. Faced with this situation the college reflects on their operation
and decides that the butler has to be more proactive in managing the dining room.

12.2	 Proactive Management

The butler is now required to ensure that no more than four of the philosophers are in the room at any
one time. This guarantees that at least one of the philosophers will be able to pick the single spare fork
on their right hand side. The required behaviour of the butler is shown in Listing 12-5.

The first part of the behaviour up to {21} is identical to that of the LazyButler except that a variable
seated has been defined {17}, which counts the number of philosophers already sitting. In addition,
an extra alternative, exitAlt {24} is defined over the exits only. Initially, the butler determines whether
there are at least two spare seats in the room {27}, in which case there is space for another philosopher
to enter and start eating. In this case we can accept an input on any of the channels, allChans, managed
by the butler. If there is no space then we can only accept inputs from philosophers wishing to exit the
room. The alternative to use is determined based on the value of space {28}. An enabled input is then
selected {29} and read {30}. It is important to note that allChans contains the exits channels
first so that we can read exit signals from allChans; regardless of which alternative is used. We can
determine whether or not this instance results from a philosopher exiting or entering the room by
testing the index of the read channel, i, against the number of seats {31} and updating the number
of philosophers seated accordingly.

The college is very relieved to discover that this simple change of butler behaviour is sufficient to remedy
the situation provided they replace the invocation of the LazyButler by the Butler on line {20} of
Listing 12-4.

10	class Butler implements CSProcess {
11	
12	 def ChannelInputList enters
13	 def ChannelInputList exits
14	
15	 void run() {
16	 def seats = enters.size()
17	 def seated = 0
18	
19	 def allChans = []
20	 for (i in 0 ..< seats) { allChans << exits[i] }
21	 for (i in 0 ..< seats) { allChans << enters[i] }
22	
23	 def eitherAlt = new ALT (allChans)
24	 def exitAlt = new ALT (exits)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

170

Dining Philosophers: A Classic Problem

25	
26	 while (true) {
27	 def spaces = seated < (seats – 1)
28	 def usedAlt = spaces ? eitherAlt : exitAlt
29	 def i = usedAlt.select()
30	 allChans[i].read()
31	 def exiting = i < seats
32	 seated = exiting ? seated – 1 : seated + 1
33	 } // end while
34	 } //end run
35	} // end class

Listing 12-5 The Modified Butler Behaviour

Output from the modified butler behaviour is shown in Output 12-2. It can be seen that all bar Philosopher
0 enter the room and that means that Philosopher 1 and 2 can eat at the same time. When Philosopher
1 finishes eating and leaves the room to resume thinking, Philosopher 3 is now able to eat. Further
analysis shows that there are two Philosophers eating most of the time as should be expected. Thinking
appears to be a solitary activity!

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

171

Dining Philosophers: A Classic Problem

 thinking : 0

 thinking : 1

 thinking : 2

 thinking : 3

 thinking : 4

1: entered

2: entered

3: entered

4: entered

1: got left fork

2: got left fork

3: got left fork

4: got left fork

1: got right fork

 eating : 1

2: got right fork

 eating : 2

1: put down left

1: put down right

0: entered

0: got left fork

1: exited

 thinking : 1

2: put down left

3: got right fork

 eating : 3

Output 12-2 Modified Behaviour

12.3	 A More Sophisticated Canteen

In an effort to provide a better service the college decides that, rather than having a single dining room
with its somewhat limited eating facilities, it is going to invest in a canteen style food facility. Philosophers
will be allowed to enter the canteen, go to a serving hatch, pick up their food, in the form of a chicken,
without having to wait, in fact waiting will not be allowed and then go into the canteen to find a place
to sit. The college authorities guarantee that there will be sufficient places for everyone to sit and that
nothing else can go wrong. They are so confident that they allow any number of philosophers to enter
the canteen. To this end they have decided that a visual display will be provided showing the state of the
kitchen, in which the chef cooks the chickens, the state at the serving hatch and they have also installed
monitoring devices that shows the action each philosopher is currently undertaking.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

172

Dining Philosophers: A Classic Problem

The chef is capable of cooking four chickens at a time but it does take time for them to cook and also
to take them to the serving hatch. This is shown in Listing 12-6.

10	class Chef implements CSProcess {
11	
12	 def ChannelOutput supply
13	 def ChannelOutput toConsole
14	
15	 void run () {
16
17	 def tim = new CSTimer()
18	 def CHICKENS = 4
19	
20	 toConsole.write("Starting … \n")
21	 while(true){
22	 toConsole.write("Cooking … \n") // cook 4 chickens
23	 tim.after (tim.read () + 2000) // this takes 2 seconds to cook
24	 toConsole.write("$CHICKENS chickens ready … \n")
25	 supply.write (CHICKENS)
26	 toConsole.write("Taking chickens to Canteen … \n")
27	 supply.write (0)
28	 }
29	 }
30	}

Listing 12-6 The Chef’s behaviour

The supply channel {12} is used to indicate to the canteen how many chickens are about to arrive.
The toConsole channel {13} is used to write information on the display. It takes 2 seconds to cook
the chickens {23} with appropriate messages output to the console. The number of chickens is sent on
the supply channel to the canteen {25}. The write to the supply channel {26} is used to represent the
point at which the chickens have been transferred to the serving hatch as can be seen in Listing 12-7.

The canteen receives requests for a chicken from a philosopher on the service channel {12} and
notification of its availability is given on the deliver channel {13}. The Chef process uses the supply
channel to indicate that chickens are ready for serving {14}. The toConsole channel is used to display
the current availability of chickens on the display {15}. The canteen alternates over the supply and
service channels {19}. A timer {24} is required to reflect the time it takes to set down the chickens
by the Chef. The enabled alternative is selected using the fair option {30}.

In the case of SUPPLY, when more chickens become available, the value is read from supply {32}
and a message written to the console {33}. A delay of 3 seconds is created {34} representing the time
taken to transfer chickens from the kitchen to the canteen. After this the number of chickens available
is incremented {35} by value. The canteen console is updated {36} and the signal written by the Chef
{Listing 12-6, 27} is read {37} and this permits the Chef to return to the Kitchen to cook more chickens.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

173

Dining Philosophers: A Classic Problem

10	class InstantCanteen implements CSProcess {
11
12	 def ChannelInput service
13	 def ChannelOutput deliver
14	 def ChannelInput supply
15	 def ChannelOutput toConsole
16
17	 void run () {
18
19	 def canteenAlt = new ALT ([supply, service])
20
21	 def SUPPLY = 0
22	 def SERVICE = 1
23
24	 def tim = new CSTimer()
25	 def chickens = 0
26
27	 toConsole.write("Canteen : starting … \n")
28
29	 while (true) {
30	 switch (canteenAlt.fairSelect ()) {
31	 case SUPPLY:
32	 def value = supply.read()
33	 toConsole.write("Chickens on the way …\n")

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

174

Dining Philosophers: A Classic Problem

34	 tim.after (tim.read() + 3000)
35	 chickens = chickens + value
36	 toConsole.write("$chickens chickens now available …\n")
37	 supply.read()
38	 break
39	 case SERVICE:
40	 def id = service.read()
41	 if (chickens > 0) {
42		 chickens = chickens – 1
43		 �toConsole.write ("chicken ready for Philosopher $id …$chickens
	 chickens left\n")
44		 deliver.write(1)
45		 }
46		 else {
47		 toConsole.write(" NO chickens left … \n")
48		 deliver.write(0)
49	 }
50	 break
51	 }
52	 }
53	 }
54	}

Listing 12-7 The Canteen Behaviour

When a philosopher requires SERVICE, their id is read from the service channel {40}. The Canteen
at this point recognises that there may be no chickens available but is sure that this will not happen. Thus
a test is undertaken on the number of available chickens {41} and if there is a chicken available the
number of chickens is decremented {42} and a message to that effect output {43}. The philosopher is
informed by the writing of a 1 on the deliver channel {44}. If no chickens are available, a message is
displayed {47} and a zero is written to the deliver channel {48}.

The behaviour of the Philosophers is now somewhat different; they still think and eat forever, in rotation.
However, the philosophers are now somewhat sanguine about the College authorities’ capabilities and
use a behaviour in which they try to cover every eventuality as shown in Listing 12-8. A philosopher
has an id {12}, a channel upon which a service request is made {13} and one upon which a chicken
delivery is made {14} plus a channel to write messages on a console {15}. A timer {18} is required
to time the philosopher’s actions and an initial message is written toConsole {19}.

10	class PhilosopherBehaviour implements CSProcess {
11	
12	 def int id = -1
13	 def ChannelOutput service
14	 def ChannelInput deliver
15	 def ChannelOutput toConsole
16	

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

175

Dining Philosophers: A Classic Problem

17	 void run() {
18	 def tim = new CSTimer()
19	 toConsole.write("Starting … \n")
20	 while (true) {
21	 toConsole.write("Thinking … \n")
22	 if (id > 0) {
23	 tim.sleep (3000)
24	 }
25	 else {
26	 // Philosopher 0, has a 0.1 second think
27	 tim.sleep (100)
28	 }
29	 toConsole.write("Need a chicken …\n")
30	 service.write(id)
31	 def gotOne = deliver.read()
32	 if (gotOne > 0) {
33	 toConsole.write("Eating … \n")
34	 tim.sleep (2000)
35	 toConsole.write("Brrrp … \n")
36	 }
37	 else {
38	 toConsole.write("			 Oh dear No chickens left \n")
39	 }
40	 }
41	 }
42	}

Listing 12-8 The Philosopher Behaviour

Initially, a philosopher thinks for 3 seconds {22}, unless they are philosopher 0 who only thinks for
0.1 seconds {27}. At this point the behaviour is common and starts by indicating on the console that
the philosopher needs a chicken {29}, and is followed by a signal request on the service channel with
the philosopher’s id {30}. At this point we note that the philosopher is behaving like a client and thus
immediately follows the service request with the input of the chicken on the deliver channel {31}
containing the server response from the canteen. The philosopher now tests the value of gotOne {32}
to see if they have been given a chicken. If this is the case, then a message is output and the philosopher
takes 2 seconds to eat the chicken, after which he burps {35}. If no chicken is available a sad message
appears {38}.

The above process is formed into a further process each with a GConsole, upon which console messages
can be displayed.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

176

Dining Philosophers: A Classic Problem

The script that invokes the system is shown in Listing 12-9. The channels that implement the service
and deliver connections between the philosophers and the canteen are shared {10, 11}, any2one and
one2any channels respectively, enabling any of the philosophers to access the canteen. A list of five
philosophers is then created with each connected to service and deliver {16, 17}. The other processes,
InstantServery comprising the canteen and its console and the Kitchen comprising the Chef and
its console are added to processList {20-24}. The processes are then run. This can be observed by
running the script InstantCollege in c12.examples.canteen. Needless to say we observe that
some philosophers do not get a chicken and more importantly miss their turn!

10	def service = Channel.any2one ()
11	def deliver = Channel.one2any ()
12	def supply = Channel.one2one ()
13	
14	def philosopherList = (0 .. 4).collect{
15	 i -> return new Philosopher(philosopherId: i,
16								 service: service.out(),
17								 deliver: deliver.in())
18	 }
19
20	def processList = [new InstantServery (service:service.in(),
21								 deliver:deliver.out(),
22								 supply:supply.in()),
23					 new Kitchen (supply:supply.out())
24]
25
26	processList = processList + philosopherList
27	new PAR (processList).run()

Listing 12-9 The Instant Canteen Script

It is obvious that the behaviour of the canteen is at fault as it did not stop philosophers making requests
for service when there were no chickens available. The revised behaviour is shown in Listing 12-10,
which has been augmented by the use of pre-conditions.

The precondition array is initialised {20} so that chickens can always be supplied from the kitchen. Initially,
there are no chickens available so the service precondition is false. At the start of the process’ main
loop the state of the service precondition is re-evaluated {31}. If no chickens are available a message to
that effect is displayed {32–34}. Now, of course, we enter each case in the switch associated with the
enabled alternative knowing the precise state of the canteen and thus the coding is much simpler. In
particular, we only permit service requests when we are assured that chickens are available {44–48}.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

177

Dining Philosophers: A Classic Problem

This version of the system can be executed using the script QueuingCollege and another version
that shows clock ticks in the canteen console is also available, ClockedQueuingCollege. It can be
observed from an execution of the system, which allows numbers other than five philosophers, that every
philosopher gets a chicken whenever they are hungry, however, they may have to wait.

10	class QueuingCanteen implements CSProcess {
11	
12	 def ChannelInput service
13	 def ChannelOutput deliver
14	 def ChannelInput supply
15	 def ChannelOutput toConsole
16	
17	 void run () {
18
19	 def canteenAlt = new ALT ([supply, service])
20	 def boolean [] precondition = [true, false]
21	
22	 def SUPPLY = 0
23	 def SERVICE = 1
24
25	 def tim = new CSTimer()
26	 def chickens = 0
27	

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

178

Dining Philosophers: A Classic Problem

28	 toConsole.write ("Canteen : starting … \n")
29
30	 while (true) {
31	 precondition[SERVICE] = (chickens > 0)
32	 if (chickens == 0){
33	 toConsole.write ("Waiting for chickens …\n")
34	 }
35	 switch (canteenAlt.fairSelect (precondition)) {
36	 case SUPPLY:
37	 def value = supply.read()
38	 toConsole.write ("Chickens on the way …\n")
39	 tim.after (tim.read() + 3000)
40	 chickens = chickens + value
41	 toConsole.write ("$chickens chickens now available …\n")
42	 supply.read()
43	 break
44	 case SERVICE:
45	 def id = service.read()
46	 chickens = chickens – 1
47	 �toConsole.write ("chicken ready for Philosoper $id … $chickens
						 chickens left \n")
48	 deliver.write(1)
49	 break
50	 }
51	 }
52	 }
53	}

Listing 12-10 The Revised Canteen With Alternative Pre-conditions

12.4	 Summary

This chapter has presented solutions to the classical dining philosophers’ problem using two different
formulations. The second solution, using a canteen is also an instance of the client-server design pattern
with the canteen acting as a pure server and the chef and philosophers acting as pure clients. This perhaps
demonstrates that even though the coding in both cases followed the client-server pattern it was still
possible to create an erroneous solution. The client-server design pattern is not a panacea for all occasions;
it has to be applied sensibly and with understanding. Even if the communication patterns are correct it
is still possible to create incorrect systems if insufficient thought is given to the problem solution.

http://bookboon.com/

